Home
Class 12
MATHS
sin^-1(cos x)+tan ^-1(cot x)...

`sin^-1(cos x)+tan ^-1(cot x)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the expression \( y = \sin^{-1}(\cos x) + \tan^{-1}(\cot x) \) with respect to \( x \), we will follow these steps: ### Step 1: Differentiate \( y \) We start with the expression: \[ y = \sin^{-1}(\cos x) + \tan^{-1}(\cot x) \] ### Step 2: Differentiate \( \sin^{-1}(\cos x) \) Using the chain rule, the derivative of \( \sin^{-1}(u) \) is given by: \[ \frac{d}{dx}(\sin^{-1}(u)) = \frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx} \] Here, \( u = \cos x \), so: \[ \frac{du}{dx} = -\sin x \] Thus, we have: \[ \frac{d}{dx}(\sin^{-1}(\cos x)) = \frac{1}{\sqrt{1 - \cos^2 x}} \cdot (-\sin x) \] Since \( 1 - \cos^2 x = \sin^2 x \), we can simplify this to: \[ \frac{d}{dx}(\sin^{-1}(\cos x)) = \frac{-\sin x}{\sqrt{\sin^2 x}} = -\sin x \] ### Step 3: Differentiate \( \tan^{-1}(\cot x) \) Using the chain rule again, the derivative of \( \tan^{-1}(v) \) is given by: \[ \frac{d}{dx}(\tan^{-1}(v)) = \frac{1}{1 + v^2} \cdot \frac{dv}{dx} \] Here, \( v = \cot x \), so: \[ \frac{dv}{dx} = -\csc^2 x \] Thus, we have: \[ \frac{d}{dx}(\tan^{-1}(\cot x)) = \frac{1}{1 + \cot^2 x} \cdot (-\csc^2 x) \] Since \( 1 + \cot^2 x = \csc^2 x \), we can simplify this to: \[ \frac{d}{dx}(\tan^{-1}(\cot x)) = \frac{-\csc^2 x}{\csc^2 x} = -1 \] ### Step 4: Combine the derivatives Now, we can combine the derivatives from Step 2 and Step 3: \[ \frac{dy}{dx} = -\sin x - 1 \] ### Step 5: Final result Thus, the derivative of the given expression is: \[ \frac{dy}{dx} = -\sin x - 1 \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Let x_(1) " and " x_(2) ( x_(1) gt x_(2)) be roots of the equation sin^(-1) ( cos ( tan^(-1)( cosec ( cot^(-1)x)))) = pi/6 , then

If f(x)=sin^(-1)(sin x),g(x)=cos^(-1)(cos x) and h(x)=cot^(-1)(cot x) , then which of the following is/are correct ?

The domain and range of f(x) = sin^1x + cos^-1 x +tan^-1x + cot^-1x + sec^-1x + cosec^-1x respectively are

The value of sin[cot^(-1){cos(tan^(-1) x)}] is

Simplify sin(cot^(-1)(cos(tan^(-1)x))),0 ltxlt1 .

If A=(1)/(pi)[{:(sin^(-1)(pix),tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi)),cot^(-1)(pix)):}] and B=(1)/(pi) [{:(-cos^(-1)(pix), tan^(-1)((x)/(pi))),(sin^(-1)((x)/(pi)),-tan^(-1)(pix)):}] then A-B is equal to

The value of 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x) is equal to cot^(-1)x (b) cot^(-1)1/x tan^(-1)x (d) none of these

The value of 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x) is equal to (a) cot^(-1)x (b) cot^(-1)1/x (c) tan^(-1)x (d) none of these

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

If f(x) = sin^(-1) x. cos^(-1) x. tan^(-1) x . cot^(-1) x. sec^(-1) x. cosec^(-1) x , then which of the following statement (s) hold(s) good?