Home
Class 12
MATHS
tan^-1((1+x)/(1-x))...

`tan^-1((1+x)/(1-x))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \tan^{-1}\left(\frac{1+x}{1-x}\right) \), we can follow these steps: ### Step 1: Rewrite the expression Let \( y = \tan^{-1}\left(\frac{1+x}{1-x}\right) \). ### Step 2: Use a trigonometric identity We can express the argument of the arctangent in terms of tangent. We know that: \[ \tan\left(\frac{\pi}{4} + \theta\right) = \frac{\tan\frac{\pi}{4} + \tan\theta}{1 - \tan\frac{\pi}{4} \tan\theta} \] Here, \( \tan\frac{\pi}{4} = 1 \) and \( \tan\theta = x \). Thus, we can rewrite: \[ \frac{1+x}{1-x} = \tan\left(\frac{\pi}{4} + \tan^{-1}(x)\right) \] ### Step 3: Simplify the expression So we can rewrite \( y \): \[ y = \tan^{-1}\left(\tan\left(\frac{\pi}{4} + \tan^{-1}(x)\right)\right) \] This simplifies to: \[ y = \frac{\pi}{4} + \tan^{-1}(x) \] ### Step 4: Differentiate with respect to \( x \) Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}\left(\frac{\pi}{4} + \tan^{-1}(x)\right) \] Since \( \frac{\pi}{4} \) is a constant, its derivative is 0. The derivative of \( \tan^{-1}(x) \) is: \[ \frac{d}{dx}\left(\tan^{-1}(x)\right) = \frac{1}{1+x^2} \] Thus: \[ \frac{dy}{dx} = 0 + \frac{1}{1+x^2} = \frac{1}{1+x^2} \] ### Final Result The derivative of \( y = \tan^{-1}\left(\frac{1+x}{1-x}\right) \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{1}{1+x^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)((1+2x)/(1-2x))wdotrdottsqrt(1+4x^2) and tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)(x)

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7)

Solve : tan^(-1)((x+1)/(x-1)) + tan^(-1)( (x-1)/(x)) = pi + tan^(-1) (-7)

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Evaluate: inte^(tan^-1x)(1+x/(1+x^2))dx

Solve for x : tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Solve for x : tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Solve for x : tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Find the value of tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4