Home
Class 12
MATHS
cos^(-1)((1-x^(2n))/(1+x^(2n)))...

`cos^(-1)((1-x^(2n))/(1+x^(2n)))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \cos^{-1}\left(\frac{1 - x^{2n}}{1 + x^{2n}}\right) \), we will follow these steps: ### Step 1: Define the Function Let \[ y = \cos^{-1}\left(\frac{1 - x^{2n}}{1 + x^{2n}}\right) \] ### Step 2: Use a Trigonometric Substitution To simplify the differentiation, we can set: \[ x^n = \tan(\theta) \] This implies: \[ \theta = \tan^{-1}(x^n) \] ### Step 3: Rewrite the Function in Terms of \(\theta\) Substituting \( \tan(\theta) \) into the function gives: \[ y = \cos^{-1}\left(\frac{1 - \tan^2(\theta)}{1 + \tan^2(\theta)}\right) \] Using the identity \( \frac{1 - \tan^2(\theta)}{1 + \tan^2(\theta)} = \cos(2\theta) \), we can rewrite \( y \) as: \[ y = \cos^{-1}(\cos(2\theta)) \] ### Step 4: Simplify the Expression Since \( \cos^{-1}(\cos(2\theta)) = 2\theta \) (for \( \theta \) in the appropriate range), we have: \[ y = 2\theta \] Substituting back for \(\theta\): \[ y = 2\tan^{-1}(x^n) \] ### Step 5: Differentiate with Respect to \( x \) Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = 2 \cdot \frac{d}{dx}(\tan^{-1}(x^n)) \] Using the chain rule, we find: \[ \frac{d}{dx}(\tan^{-1}(x^n)) = \frac{1}{1 + (x^n)^2} \cdot \frac{d}{dx}(x^n) \] The derivative of \( x^n \) is: \[ \frac{d}{dx}(x^n) = n x^{n-1} \] Thus, we have: \[ \frac{dy}{dx} = 2 \cdot \frac{1}{1 + x^{2n}} \cdot n x^{n-1} \] ### Step 6: Final Expression Combining everything, we get: \[ \frac{dy}{dx} = \frac{2n x^{n-1}}{1 + x^{2n}} \] ### Summary The derivative of \( y = \cos^{-1}\left(\frac{1 - x^{2n}}{1 + x^{2n}}\right) \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{2n x^{n-1}}{1 + x^{2n}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Evaluate: inte^x(1+n x^(n-1)-x^(2n))/((1-x^n)sqrt(1-x^(2n)))dx

Discuss the continuity of f(x)=(lim)_(n->oo)(x^(2n)-1)/(x^(2n)+1)

The function f (x)={((x ^(2n)))/((x ^(2n) sgn x)^(2n+1))((e ^(1/x)-e ^(-1/x))/(e ^(1/x)+e ^(-(1)/(x))))x ne0 n in N is:

If x_1, x_2, x_3,...... x _(2n) are in A.P , then sum _(r=1)^(2n) (-1)^(r+1) x_r^2 is equal to (a) (n)/((2n-1))(x _(1)^(2) -x _(2n) ^(2)) (b) (2n)/((2n-1))(x _(1)^(2) -x _(2n) ^(2)) (c) (n)/((n-1))(x _(1)^(2) -x _(2n) ^(2)) (d) (n)/((2n+1))(x _(1)^(2) -x _(2n) ^(2))

If I_n=intxcos^nxdx,prove that: I_n=1/n cos^(n-1)x(sinx)+(n-1)/(n)I_(n-2)

Let f(x)=x+(1-x)x^3+(1-x)(1-x^2)x^3+.........+(1-x)(1-x^2)........(1-x^(n-1))x^n;(n >= 4) then :

Let the co-efficients of x^n In (1+x)^(2n) and (1+x)^(2n-1) be P & Qrespectively, then ((P+Q)/Q)^5=

The coefficient of x^(n) in the polynomial (x+""^(2n+1)C_(0))(X+""^(2n+1)C_(1)) (x+""^(2n+1)C_(2))……(X+""^(2n+1)C_(n)) is

The coefficient of 1//x in the expansion of (1+x)^n(1+1//x)^n is (n !)/((n-1)!(n+1)!) b. ((2n)!)/((n-1)!(n+1)!) c. ((2n)!)/((2n-1)!(2n+1)!) d. none of these

Show that 1/(x+1)+2/(x^2+1)+4/x^4+1)+…..+2^n/(x^2^n+1)= /(x-1)- 2^(n+1)/(x^2(n+1) -1)