Home
Class 12
MATHS
tan^-1""((3-5x)/(1+15x))...

`tan^-1""((3-5x)/(1+15x))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the expression \( \tan^{-1}\left(\frac{3 - 5x}{1 + 15x}\right) \), we will follow these steps: ### Step 1: Identify the expression We start with the expression: \[ y = \tan^{-1}\left(\frac{3 - 5x}{1 + 15x}\right) \] ### Step 2: Use the formula for the difference of arctangents We can use the formula for the difference of arctangents: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right) \] In our case, we can rewrite the expression as: \[ y = \tan^{-1}(3) - \tan^{-1}(5x) \] This is because: - \( a = 3 \) - \( b = 5x \) ### Step 3: Differentiate the expression Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}\left(\tan^{-1}(3)\right) - \frac{d}{dx}\left(\tan^{-1}(5x)\right) \] Since \( \tan^{-1}(3) \) is a constant, its derivative is 0. Therefore, we only need to differentiate \( \tan^{-1}(5x) \): \[ \frac{d}{dx}\left(\tan^{-1}(5x)\right) = \frac{1}{1 + (5x)^2} \cdot \frac{d}{dx}(5x) = \frac{5}{1 + 25x^2} \] ### Step 4: Combine the results Putting it all together, we have: \[ \frac{dy}{dx} = 0 - \frac{5}{1 + 25x^2} = -\frac{5}{1 + 25x^2} \] ### Final Result Thus, the derivative of the given expression is: \[ \frac{dy}{dx} = -\frac{5}{1 + 25x^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Differentiate w.r.t x tan^-1((2x)/(1+15x^2))

tan^-1((5x)/(1-6x^2))

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

show that tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/sqrt3

Prove that tan^(-1)x+tan^(-1)(2x)/(1-x^2)=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/(sqrt(3))

Prove that : 1/6tan^(-1)""(2x)/(1-x^2)+1/9tan^(-1)""(3x-x^2)/(1-3x^2)+1/12 tan^(-1)""(4x-4x^3)/((1-6x^2+x^4))= tan^(-1)x

Prove the following: tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2))

Prove the following: tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2))

If -1/(sqrt(3)) < x < 1/(sqrt(3)) , differentiate tan^(-1)((3x-x^3)/(1-3x^2)) with respect to tan^(-1)((2x)/(1-x^2)) .