Home
Class 12
MATHS
tan^-1((5x)/(1-6x^2))...

`tan^-1((5x)/(1-6x^2))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the expression \( y = \tan^{-1}\left(\frac{5x}{1 - 6x^2}\right) \) with respect to \( x \), we can follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ y = \tan^{-1}\left(\frac{5x}{1 - 6x^2}\right) \] We can express \( 5x \) as \( 3x + 2x \) so that we can use the formula for the sum of arctangents. ### Step 2: Use the Arctangent Addition Formula Using the formula for the tangent of a sum: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] we can rewrite: \[ y = \tan^{-1}(3x) + \tan^{-1}(2x) \] This gives us: \[ y = \tan^{-1}(3x) + \tan^{-1}(2x) \] ### Step 3: Differentiate Each Term Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}\left(\tan^{-1}(3x)\right) + \frac{d}{dx}\left(\tan^{-1}(2x)\right) \] Using the derivative of \( \tan^{-1}(u) \) which is \( \frac{1}{1 + u^2} \cdot \frac{du}{dx} \): 1. For \( \tan^{-1}(3x) \): \[ \frac{d}{dx}\left(\tan^{-1}(3x)\right) = \frac{1}{1 + (3x)^2} \cdot 3 = \frac{3}{1 + 9x^2} \] 2. For \( \tan^{-1}(2x) \): \[ \frac{d}{dx}\left(\tan^{-1}(2x)\right) = \frac{1}{1 + (2x)^2} \cdot 2 = \frac{2}{1 + 4x^2} \] ### Step 4: Combine the Derivatives Now, we combine the derivatives: \[ \frac{dy}{dx} = \frac{3}{1 + 9x^2} + \frac{2}{1 + 4x^2} \] ### Step 5: Final Expression Thus, the final expression for the derivative is: \[ \frac{dy}{dx} = \frac{3}{1 + 9x^2} + \frac{2}{1 + 4x^2} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Differentiate the following function with respect to x : tan^(-1)(x/(1+6x^2))

Differentiate tan^(-1){(5x)/(1-6\ x^2)} , -1/(sqrt(6))ltxlt1/ (sqrt(6)) with respect to x

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

show that tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/sqrt3

Prove that : 1/6tan^(-1)""(2x)/(1-x^2)+1/9tan^(-1)""(3x-x^2)/(1-3x^2)+1/12 tan^(-1)""(4x-4x^3)/((1-6x^2+x^4))= tan^(-1)x

If y = tan^(-1) (x/(1 + 6x^2)) + tan^(-1) ((2x - 1)/(2x + 1)), (AA x > 0) then (dy)/(dx) is equal to

Differentiate tan^(-1)((1+2x)/(1-2x))wdotrdottsqrt(1+4x^2) and tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)(x)

Prove that tan^(-1)x+tan^(-1)(2x)/(1-x^2)=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/(sqrt(3))