Home
Class 12
MATHS
Differentiate w.r.t x tan^-1((2x)/(1+15x...

Differentiate w.r.t x
`tan^-1((2x)/(1+15x^2))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \tan^{-1}\left(\frac{2x}{1 + 15x^2}\right) \) with respect to \( x \), we can use the formula for the derivative of the inverse tangent function, which is: \[ \frac{d}{dx} \tan^{-1}(u) = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \( u = \frac{2x}{1 + 15x^2} \). ### Step 1: Differentiate the inner function \( u \) First, we need to differentiate \( u \): \[ u = \frac{2x}{1 + 15x^2} \] Using the quotient rule, which states that if \( u = \frac{f(x)}{g(x)} \), then: \[ \frac{du}{dx} = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \] Here, \( f(x) = 2x \) and \( g(x) = 1 + 15x^2 \). Calculating \( f'(x) \) and \( g'(x) \): \[ f'(x) = 2 \] \[ g'(x) = 30x \] Now applying the quotient rule: \[ \frac{du}{dx} = \frac{(2)(1 + 15x^2) - (2x)(30x)}{(1 + 15x^2)^2} \] Simplifying the numerator: \[ = \frac{2 + 30x^2 - 60x^2}{(1 + 15x^2)^2} \] \[ = \frac{2 - 30x^2}{(1 + 15x^2)^2} \] ### Step 2: Substitute \( u \) and \( \frac{du}{dx} \) into the derivative formula Now we substitute \( u \) and \( \frac{du}{dx} \) into the derivative formula: \[ \frac{dy}{dx} = \frac{1}{1 + \left(\frac{2x}{1 + 15x^2}\right)^2} \cdot \frac{du}{dx} \] Calculating \( 1 + u^2 \): \[ u^2 = \left(\frac{2x}{1 + 15x^2}\right)^2 = \frac{4x^2}{(1 + 15x^2)^2} \] Thus, \[ 1 + u^2 = 1 + \frac{4x^2}{(1 + 15x^2)^2} = \frac{(1 + 15x^2)^2 + 4x^2}{(1 + 15x^2)^2} \] Expanding \( (1 + 15x^2)^2 \): \[ = 1 + 30x^2 + 225x^4 + 4x^2 = 1 + 34x^2 + 225x^4 \] So, \[ 1 + u^2 = \frac{1 + 34x^2 + 225x^4}{(1 + 15x^2)^2} \] Now substituting back into the derivative: \[ \frac{dy}{dx} = \frac{(1 + 15x^2)^2}{1 + 34x^2 + 225x^4} \cdot \frac{2 - 30x^2}{(1 + 15x^2)^2} \] ### Step 3: Simplify the expression The \( (1 + 15x^2)^2 \) cancels out: \[ \frac{dy}{dx} = \frac{2 - 30x^2}{1 + 34x^2 + 225x^4} \] Thus, the final answer is: \[ \frac{dy}{dx} = \frac{2 - 30x^2}{1 + 34x^2 + 225x^4} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Differentiate w.r.t x tan (x^2)

Differentiate w.r.t x sin^4x

Differentiate w.r.t x tan (sqrt(x))

Differentiate w.r.t x e^(5x)

Differentiate w.r.t y = x^(-2)

Differentiate w.r.t y = x^(10)

Differentiate w.r.t x e^("sin x")

Differentiate tan^(-1)((2x)/(1-x^(2))) w.r.t. sin^(-1)((2x)/(1+x^(2))).

Differentiate w.r.t x sec (sec x)

Differentiate w.r.t x y = 8x^(8)