Home
Class 12
MATHS
Differentiate tan^-1((4sqrt(x))/(1-4x))...

Differentiate `tan^-1((4sqrt(x))/(1-4x))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \tan^{-1}\left(\frac{4\sqrt{x}}{1-4x}\right) \), we can follow these steps: ### Step 1: Rewrite the expression We start by rewriting the expression inside the inverse tangent function. We can express \( \frac{4\sqrt{x}}{1-4x} \) in terms of a tangent function. Let: \[ \tan(\theta) = 2\sqrt{x} \] Then: \[ \frac{4\sqrt{x}}{1-4x} = \tan(2\theta) \] ### Step 2: Use the identity for tangent of double angle Using the double angle formula for tangent: \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \] Substituting \( \tan(\theta) = 2\sqrt{x} \): \[ \tan(2\theta) = \frac{2(2\sqrt{x})}{1 - (2\sqrt{x})^2} = \frac{4\sqrt{x}}{1 - 4x} \] ### Step 3: Rewrite the function Thus, we can rewrite our function as: \[ y = \tan^{-1}(\tan(2\theta)) = 2\theta \] This implies: \[ y = 2\tan^{-1}(2\sqrt{x}) \] ### Step 4: Differentiate the function Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = 2 \cdot \frac{d}{dx} \left( \tan^{-1}(2\sqrt{x}) \right) \] Using the derivative of \( \tan^{-1}(u) \), where \( u = 2\sqrt{x} \): \[ \frac{d}{dx} \tan^{-1}(u) = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] ### Step 5: Calculate \( \frac{du}{dx} \) First, we find \( \frac{du}{dx} \): \[ u = 2\sqrt{x} \implies \frac{du}{dx} = 2 \cdot \frac{1}{2\sqrt{x}} = \frac{1}{\sqrt{x}} \] ### Step 6: Substitute back into the derivative Now substituting back: \[ \frac{dy}{dx} = 2 \cdot \frac{1}{1 + (2\sqrt{x})^2} \cdot \frac{1}{\sqrt{x}} = 2 \cdot \frac{1}{1 + 4x} \cdot \frac{1}{\sqrt{x}} \] ### Step 7: Simplify the expression Thus, we have: \[ \frac{dy}{dx} = \frac{2}{\sqrt{x}(1 + 4x)} \] ### Final Answer The derivative of \( y = \tan^{-1}\left(\frac{4\sqrt{x}}{1-4x}\right) \) is: \[ \frac{dy}{dx} = \frac{2}{\sqrt{x}(1 + 4x)} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If x in((1)/(sqrt2)1). Differentiate tan^(-1)(sqrt(1-x^(2))/(x)) w.r. t. cos^(-1)(2xsqrt(1-x^(2))).

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x ,x!=0.

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x ,x!=0.

Differentiate tan^-1sqrt((1-x^2)/(1+x^2)) with respect to cos^-1""x^2

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x , when x!=0.

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to sin^(-1)((2x)/(1+x^2)),

Differentiate tan^(-1)(( sqrt(1+x^(2))-1)/(x))

Differentiate tan^(-1)((sqrt(x)+sqrt(a))/(1-sqrt(x a))) with respect to x

Differentiate tan^(-1)x/(1+sqrt((1-x^2))) +{2tan^(-1)sqrt(((1-x)/(1+x)))}sinwdotrdottdotxdot

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1) ((x)/(sqrt(1-x^(2)))) .