Home
Class 12
MATHS
sin^-1[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)]...

`sin^-1[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^{-1}\left[x\sqrt{1-x} - \sqrt{x}\sqrt{1-x^2}\right] \), we will simplify it step by step. ### Step 1: Rewrite the Expression Let \( y = \sin^{-1}\left[x\sqrt{1-x} - \sqrt{x}\sqrt{1-x^2}\right] \). ### Step 2: Simplify the Inside of the Inverse Sine We can rewrite the expression inside the inverse sine: \[ y = \sin^{-1}\left[x\sqrt{1-x} - \sqrt{x}\sqrt{1-x^2}\right] \] Notice that \( \sqrt{1-x^2} = \sqrt{(1-x)(1+x)} \). ### Step 3: Factor the Expression The expression can be factored: \[ x\sqrt{1-x} - \sqrt{x}\sqrt{1-x^2} = \sqrt{x}\left(\sqrt{1-x} - \sqrt{1-x^2}\right) \] ### Step 4: Use the Identity for \( \sin^{-1} \) We can use the identity: \[ \sin^{-1}(a) - \sin^{-1}(b) = \sin^{-1}\left(a\sqrt{1-b^2} - b\sqrt{1-a^2}\right) \] In our case, we can let \( a = x \) and \( b = \sqrt{x} \). ### Step 5: Apply the Identity Using the identity, we can write: \[ y = \sin^{-1}(x) - \sin^{-1}(\sqrt{x}) \] ### Step 6: Differentiate the Expression Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(\sin^{-1}(x)) - \frac{d}{dx}(\sin^{-1}(\sqrt{x})) \] Using the derivative of \( \sin^{-1}(u) \): \[ \frac{d}{dx}(\sin^{-1}(u)) = \frac{1}{\sqrt{1-u^2}} \cdot \frac{du}{dx} \] For \( \sin^{-1}(x) \): \[ \frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}} \] For \( \sin^{-1}(\sqrt{x}) \): \[ \frac{d}{dx}(\sin^{-1}(\sqrt{x})) = \frac{1}{\sqrt{1-x}} \cdot \frac{1}{2\sqrt{x}} = \frac{1}{2\sqrt{x}\sqrt{1-x}} \] ### Step 7: Combine the Derivatives Combining the derivatives gives us: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}} - \frac{1}{2\sqrt{x}\sqrt{1-x}} \] ### Final Result Thus, the derivative of the given expression is: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}} - \frac{1}{2\sqrt{x}\sqrt{1-x}} \]
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If y=cos^(-1){xsqrt(1-x)+sqrt(x)sqrt(1-x^2)} and 0

d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) (-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2))+1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2)) 0 b. 1//4 c. -1//4 d. none of these

If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha, then prove that x^2=sin2alpha

If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha, then prove that x^2=sin2alpha

int(sin^2x*sec^2x+2tanx*sin^(- 1)x*sqrt(1-x^2))/(sqrt(1-x^2)(1+tan^2x))dx

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

Evaluate: int1/xsqrt((1-sqrt(x))/(1+sqrt(x))dx)

Evaluate: int1/xsqrt((1-sqrt(x))/(1+sqrt(x))dx)

(sin^(-1)x)/(sqrt(1-x^(2))