Home
Class 12
MATHS
sec^-1((x-1)/(x+1))+sin^-1((x+1)/(x-1))...

`sec^-1((x-1)/(x+1))+sin^-1((x+1)/(x-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of differentiating the expression \( y = \sec^{-1}\left(\frac{x-1}{x+1}\right) + \sin^{-1}\left(\frac{x+1}{x-1}\right) \), we can follow these steps: ### Step 1: Rewrite the Expression Let \( y = \sec^{-1}\left(\frac{x-1}{x+1}\right) + \sin^{-1}\left(\frac{x+1}{x-1}\right) \). ### Step 2: Use the Identity for Inverse Functions We know that: \[ \sin^{-1}(u) + \cos^{-1}(u) = \frac{\pi}{2} \] In our case, we can rewrite \( \sec^{-1}(u) \) in terms of \( \cos^{-1}(u) \): \[ \sec^{-1}(u) = \cos^{-1}\left(\frac{1}{u}\right) \] Thus, we can express \( y \) as: \[ y = \cos^{-1}\left(\frac{x+1}{x-1}\right) + \sin^{-1}\left(\frac{x+1}{x-1}\right) \] ### Step 3: Combine the Terms Since both terms inside the inverse functions are the same, we can apply the identity: \[ y = \frac{\pi}{2} \] This is because the argument \( \frac{x+1}{x-1} \) is the same for both functions. ### Step 4: Differentiate the Expression Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = 0 \] This is because \( y \) is a constant (\( \frac{\pi}{2} \)). ### Final Result Thus, the derivative of the given expression is: \[ \frac{dy}{dx} = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5g|12 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5h|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 5e|19 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=sin^(-1)((2)/(x))+cos^(-1)((2)/(x)) then the value of x is equal to

Find the solution of sin^(-1)(x/(1+x))-"sin"^(-1)(x-1)/(x+1)="sin"^(-1)1/(sqrt(1+x))

If "cosec" ^(-1) x = sin ^(-1) ((1)/(x)) then x may be -

If y = sec^(-1) (sqrt(x+1)/(sqrt(x-1)))+ sin^(-1)(sqrt(x-1)/(sqrt(x+1))) then (dy)/(dx) =

Find (dy)/(dx) if y=sec^(-1)((sqrt(x)+1)/(sqrt(x)-1))+sin^(-1)((sqrt(x)-1)/(sqrt(x)+1))

Find the domain of the following following functions: (a) f(x)=(sin^(-1))/(x) (b) f(x)=sin^(-1)(|x-1|-2) (c ) f(x)=cos^(-1)(1+3x+2x^(2)) (d ) f(x)=(sin^(-1)(x-3))/(sqrt(9-x^(2))) (e ) f(x)="cos"^(-1)((6-3x)/(4))+"cosec"^(-1)((x-1)/(2)) (f) f(x)=sqrt("sec"^(-1)((2-|x|)/(4)))

Solve the following equations: sin^(-1)((3x)/5)+sin^(-1)((4x)/5)=sin^(-1)x sin^(-1)6x+sin^(-1)6sqrt(3)x=pi/2

sec^(-1)(sin x) exist if

Find the domain of (i) sec^(-1)(3x-1) (ii) sec^(-1)x-tan^(-1)x

Find the domain of sec^(-1)(3x-1) (ii) sec^(-1)x-tan^(-1)x