• NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
  • Classroom
    • NEET
      • 2025
      • 2024
      • 2023
      • 2022
    • JEE
      • 2025
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
      • College Predictor
      • Counselling
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE
      • Notes
      • Sample Papers
      • Question Papers
    • Olympiad
      • NSO
      • IMO
      • NMTC
  • NEW
    • TALLENTEX
    • AOSAT
  • ALLEN E-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book home demo
Home
JEE Maths
Superset

Superset

1.0What is a Superset?

A superset is a set that includes all the elements of a given set, along with potentially other elements. The relationship between a set and its superset is defined by containment. For example, if we have a set B = {1, 2}and a set A = {1, 2, 3, 4}, then A is a superset of B because all elements of B are also present in A.

This concept is the reverse of a subset. If B is a subset of A, then A is a superset of B. This dual relationship is crucial for understanding set theory.

2.0Definition of a Superset

Let A and B be two sets. We say that A is a superset of B if and only if every element of B is also an element of A.

This can be expressed using mathematical notation: A⊇B⟺∀x(x∈B⇒x∈A)

This means that the statement "A is a superset of B" is logically equivalent to "A contains all elements of B".

3.0Symbol and Notation

The symbol used to denote a superset is ⊇ or ⊃.

  • A⊇B means "A is a superset of B." This includes the possibility that A and B are equal.
  • A⊃B means "A is a proper superset of B," which implies that A and B are not equal.

The direction of the symbol is important. It always opens towards the larger, or superset, side. A helpful way to remember this is that it's like an alligator's mouth, which always wants to eat the bigger quantity.

4.0Superset vs. Subset: The Key Difference

The relationship between a superset and a subset is a mirror image.

Concept

Definition

Example

Notation

Subset

A set A is a subset of B if every element of A is also in B.

A={1,2},B={1,2,3}

A⊆B

Superset

A set B is a superset of A if every element of A is also in B.

A={1,2},B={1,2,3}

B⊇A

In the given example, A is a subset of B, and conversely, B is a superset of A. The two concepts are inherently linked and describe the same relationship from different perspectives.

5.0Proper Superset

A proper superset is a more specific type of superset. A set A is a proper superset of set B if:

  1. A is a superset of B (A⊇B).
  2. A is not equal to B (A=B).

This means that A contains all the elements of B and at least one element that is not in B.

Notation: The symbol for a proper superset is ⊃. So, A⊃B means that A is a proper superset of B.

Example:

  • Let A={a,b,c,d} and B={a,b,c}.
  • A is a superset of B because every element in B is also in A.
  • A is a proper superset of B because A contains the element 'd' which is not in B, and A and B are not equal.

Non-Example:

  • Let P={1,2,3} and Q={1,2,3}.
  • P is a superset of Q (P⊇Q).
  • However, P is not a proper superset of Q because P=Q.

Properties of Proper Superset

  • The empty set ϕ is a proper superset of no set. It is a subset of every set, but can't contain elements not in the other set, thus it can't be a proper superset.
  • Every set is a proper superset of the empty set ϕ.
  • If A is a proper superset of B, then the number of elements in A is strictly greater than the number of elements in B (i.e., ∣A∣>∣B∣).

6.0Solved Examples on Supersets

Understanding supersets is crucial for solving problems in set theory, probability, and relations. Here are some examples typical of the JEE Main and Advanced level.

Example 1: Basic Identification

Question: Let P = {x ∈ N∣ 1 ≤ x ≤ 5} and Q = {x ∈ N∣ 1 ≤ x ≤ 3}. Is P a superset of Q?

Solution:

First, list the elements of each set.

  • P={1,2,3,4,5}
  • Q={1,2,3}
  • To check if P is a superset of Q, we must verify if every element of Q is also in P.
  • The elements of Q are 1, 2, and 3.
  • These elements are all present in P.
  • Therefore, P is a superset of Q. Since P=Q, P is also a proper superset of Q.

Example 2: Union and Intersection

Question: Let A={1,2,3}, B={2,3,4}, and C=A∪B. Is C a superset of both A and B?

Solution:

First, find the union of A and B.

  • C=A∪B={1,2,3}∪{2,3,4}={1,2,3,4}.
    Now, we check the superset relationship for both sets.

Is C a superset of A?

  • The elements of A are 1, 2, 3. All of these are in C. So, C⊇A.
  • Is C a superset of B? The elements of B are 2, 3, 4. All of these are in C. So, C⊇B.
    Thus, C is a superset of both A and B.

Example 3: Cardinality and Power Set

Question: If a set A has 5 elements, how many of its subsets are proper supersets of a given subset B with 3 elements?

Solution:

This question is framed to be tricky. A proper superset must contain all elements of the original set AND at least one more. However, the question asks for a subset of A that is a proper superset of a subset B. This is a logical contradiction.

Let's break it down:

  • We need to find a set C such that C⊆A and C⊃B.
  • This means C must contain all elements of B and at least one element from A that is not in B.
  • ∣A∣=5 and ∣B∣=3.
  • The number of elements in A but not in B is ∣A∣−∣B∣=5−3=2.
  • Let the elements of A not in B be {x,y}.
  • A set C which is a proper superset of B must contain all elements of B and at least one of {x,y}.
  • The possible sets C are formed by taking the set B and adding a non-empty subset of {x,y}.
  • The non-empty subsets of {x,y} are: {x}, {y}, {x,y}.
  • So, the possible sets C are:
    • B∪{x}
    • B∪{y}
    • B∪{x,y}
  • There are 3 such subsets of A that are proper supersets of B.

7.0Properties of Supersets

  1. Reflexive Property: Every set is a superset of itself. A⊇A.
  • This is because every element of A is also an element of A.
  1. Transitive Property: If A is a superset of B and B is a superset of C, then A is also a superset of C.
  • A⊇B and B⊇C⟹A⊇C.
  • This is because if every element of C is in B, and every element of B is in A, then it logically follows that every element of C is in A.
  1. The Universal Set: The universal set, denoted by U, is a superset of all sets under consideration.
  • For any set A, U⊇A.
  1. The Empty Set: The empty set, ϕ, is a subset of every set. This means that every set is a superset of the empty set.
  • For any set A, A⊇ϕ.
  1. Relationship with Union and Intersection
  • The union of two sets, A∪B, is a superset of both A and B.
  • The intersection of two sets, A∩B, is a subset of both A and B. This means both A and B are supersets of their intersection.
  • A⊇(A∩B) and B⊇(A∩B).

Table of Contents


  • 1.0What is a Superset?
  • 2.0Definition of a Superset
  • 3.0Symbol and Notation
  • 4.0Superset vs. Subset: The Key Difference
  • 5.0Proper Superset
  • 5.1Properties of Proper Superset
  • 6.0Solved Examples on Supersets
  • 7.0Properties of Supersets

Frequently Asked Questions

The symbol ⊇ denotes a superset, which includes the possibility that the two sets are equal. For example, if A={1,2} and B={1,2}, then A⊇B. The symbol ⊃ denotes a proper superset, which means the two sets are not equal. So, if A={1,2,3} and B={1,2}, then A⊃B.

No, the empty set (ϕ) is not a superset of any non-empty set. It is, however, a superset of itself, as per the reflexive property. The empty set is a subset of every set.

Superset relationships are fundamental to computer science, especially in database management systems and object-oriented programming. In databases, a larger table (superset) might contain all the information from a smaller, more specific table (subset). In programming, a parent class is a superset of its child class in terms of methods and properties.

No. If A is a proper superset of B, it means A contains at least one element not in B. This logically means Bcannot contain all elements of A, and thus B cannot be a superset (proper or otherwise) of A.

Not necessarily. Having a greater number of elements is a necessary condition for a proper superset but not a sufficient one. For example, let A={1,2,3} and B={4,5}. ∣A∣>∣B∣, but A is not a superset of B because the elements of B are not in A. For A to be a proper superset of B, all elements of B must be in A, and ∣A∣>∣B∣.

Join ALLEN!

(Session 2025 - 26)


Choose class
Choose your goal
Preferred Mode
Choose State
  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NCERT Solutions
    • Olympiad
    • NEET 2025 Results
    • NEET 2025 Answer Key
    • NEET College Predictor
    • NEET 2025 Counselling

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO