• Classroom Courses
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • Class 6-10
      • Class 6th
      • Class 7th
      • Class 8th
      • Class 9th
      • Class 10th
    • View All Options
      • Online Courses
      • Distance Learning
      • Hindi Medium Courses
      • International Olympiad
    • NEET
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE (Main+Advanced)
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • JEE Main
      • Class 11th
      • Class 12th
      • Class 12th Plus
    • NEET
      • 2025
      • 2024
      • 2023
      • 2022
    • JEE
      • 2025
      • 2024
      • 2023
      • 2022
    • Class 6-10
    • JEE Main
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
      • Percentile Predictor
      • Answer Key
      • Counselling
      • Eligibility
      • Exam Pattern
      • JEE Maths
      • JEE Chemistry
      • JEE Physics
    • JEE Advanced
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
      • Answer Key
      • Eligibility
      • Exam Pattern
      • Rank Predictor
    • NEET
      • Previous Year Papers
      • Sample Papers
      • Mock Test
      • Result
      • Analysis
      • Syllabus
      • Exam Date
      • College Predictor
      • Answer Key
      • Rank Predictor
      • Counselling
      • Eligibility
      • Exam Pattern
      • Biology
    • NCERT Solutions
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
      • Textbooks
    • CBSE
      • Class 12
      • Class 11
      • Class 10
      • Class 9
      • Class 8
      • Class 7
      • Class 6
      • Subjects
      • Syllabus
      • Notes
      • Sample Papers
      • Question Papers
    • ICSE
      • Class 10
      • Class 9
      • Class 8
      • Class 7
      • Class 6
    • State Board
      • Bihar
      • Karnataka
      • Madhya Pradesh
      • Maharashtra
      • Tamilnadu
      • West Bengal
      • Uttar Pradesh
    • Olympiad
      • Maths
      • Science
      • English
      • Social Science
      • NSO
      • IMO
      • NMTC
  • NEW
    • ASAT
    • AIOT
    • TALLENTEX
  • ALLEN E-Store
    • ALLEN for Schools
    • About ALLEN
    • Blogs
    • News
    • Careers
    • Request a call back
    • Book a demo
Home
JEE Physics
Periodic Function

Periodic Function

A periodic function is a mathematical function that repeats its values at regular intervals or periods. These functions are essential in mathematics and physics, especially in modeling cyclical phenomena such as sound waves, seasons, or electrical currents. Common examples include sine, cosine, and tangent functions, which play a vital role in trigonometry, Fourier analysis, and signal processing.

1.0Periodic Motion Definition

A periodic function in physics is a function that repeats its values at regular intervals or periods. It is commonly used to describe oscillations, waves, and other repetitive physical phenomena.

Key Points of Periodic Motion:

  • Many common periodic functions (like sine and cosine) are continuous, meaning they have no breaks or jumps.
  • Periodic functions repeat their pattern every interval of length. This means their graphs look identical over each interval of one period.
  • The shape and frequency of a periodic function remain unchanged over time, unless influenced by an external force or damping.
  • Many physical systems exhibit linear response to periodic inputs — meaning the output is also periodic with the same frequency, though amplitude and phase may vary.
  • Periodic functions can be amplified or attenuated depending on the system’s resonant frequency.

2.0Examples of Periodic Motion

Example

Description

Simple Harmonic Motion

Motion of a pendulum or mass-spring system

Circular Motion

Angular displacement is periodic

Alternating Current 

Current changes direction periodically

Sound Waves

Sinusoidal variation in air pressure

3.0Mathematical Definition of Periodic Motion

  • Periodic functions are mathematical functions used to describe motions or phenomena that repeat at regular intervals.
  • As sine and cosine functions exemplify periodic behavior, a particle undergoing periodic motion returns to its original position after each complete cycle. If Trepresents the period, then all physical quantities associated with the motion repeat after every interval of T.

(y=asinωt=asinω(t+T))(x=acosωt=acosω(t+T))We know that value of sine or cosine function repeats after a period of 2π radian∴(ω(t+T)=ωt+2π)(ωT=2π)ω=T2π​=2πν[∵(1/T=ν)]where ω is an angular frequency

The linear combination of sine and cosine functions is itself a periodic function, as explained below. Consider a function defined as a linear combination of sine and cosine terms 

x=f(t)=asinωt+bcosωta=Rcosϕ……(1)b=Rsinϕ……(2)x=Rcosϕsinωt+Rsinϕcosωt=Rsin(ωt+ϕ)This function describes a periodic behavior characterized by a time period T and an amplitude R.On squaring and adding equation (1) and (2) we geta2+b2=R2cos2ϕ+R2sin2ϕ=R2(cos2ϕ+sin2ϕ)=R2R2=a2+b2R=a2+b2​And on dividing (2) by (1)ab​=RcosϕRsinϕ​⇒tanϕ=ab​ϕ=tan−1(ab​)

The combination of multiple periodic functions is also periodic, with the overall time period being the smallest common multiple of the individual periods of the functions involved.

4.0Analysis of Periodic Function

Trigonometric functions such as sin θ and cos θ are periodic, repeating their values at regular intervals. Specifically, they have a period of 2π radian.sin(θ+2π)=sinθcos(θ+2π)=cosθIf the independent variable represents a physical quantity like time, we can define periodic functions with a specific time period denoted by T.f(t)=sinT2πt​Checking the given function is periodic by replacing t by t + Tf(t+T)=sinT2π​(t+T)=sin(T2πt​+2π)=sin(T2πt​)=f(t)Hence Function is Periodic.


Illustration-1.A particle executes SHM described by

x(t)=3cos(4t+6π​)

(1) Find the time period of motion.

(2) What is the displacement after a time equal to one period?

Solution:

x(t)=Acos(ωt+ϕ),ω=4,rad/s(1) Time PeriodT=ω2π​=42π​=2π​;seconds(2) Displacement after time (T)x(t+T)=3cos[4(t+T)+6π​]=3cos[4t+4T+6π​]x(t+T)=3cos[4t+4⋅2π​+6π​]=3cos(4t+6π​+2π)x(t+T)=3cos(4t+6π​)=x(t)Hence Displacement remains the same.

5.0Graph of Periodic Function

Sin x Graph

Graph of Periodic Function

6.0General Periodic Function

Function 

Formula

Period

Sine Function

sin (ωt + Φ)

(ω2π​)

Cosine Function

cos (ωt + Φ)

(ω2π​)

Square Wave

Alternates between +A and -A

Depends on switching frequency

Triangular/Sawtooth Wave

Piecewise Linear Functions

Application-dependent

General Periodic Function


Table of Contents


  • 1.0Periodic Motion Definition
  • 2.0Examples of Periodic Motion
  • 3.0Mathematical Definition of Periodic Motion
  • 4.0Analysis of Periodic Function
  • 5.0Graph of Periodic Function
  • 6.0General Periodic Function

Frequently Asked Questions

The period (T) of a wave is the time it takes for one complete cycle of the wave to pass a fixed point. It’s the interval after which the wave pattern repeats in time.

Sine and cosine functions are used to model simple harmonic motion and waveforms, such as the displacement of a mass on a spring or the electric field in a light wave.

In real systems, damping causes the amplitude of a periodic function (like in a pendulum or circuit) to decrease over time. The motion is no longer strictly periodic but still exhibits oscillatory behavior.

A waveform is the shape of the graph of a periodic signal (like a sine wave, square wave, or triangular wave). These are all types of periodic functions used in electronics, acoustics, and signal processing.

Yes. Systems like pendulums, springs, or mass-on-a-spring setups undergo simple harmonic motion, which is periodic and described by sine or cosine functions.

Join ALLEN!

(Session 2026 - 27)


Choose class
Choose your goal
Preferred Mode
Choose State
  • About
    • About us
    • Blog
    • News
    • MyExam EduBlogs
    • Privacy policy
    • Public notice
    • Careers
    • Dhoni Inspires NEET Aspirants
    • Dhoni Inspires JEE Aspirants
  • Help & Support
    • Refund policy
    • Transfer policy
    • Terms & Conditions
    • Contact us
  • Popular goals
    • NEET Coaching
    • JEE Coaching
    • 6th to 10th
  • Courses
    • Classroom Courses
    • Online Courses
    • Distance Learning
    • Online Test Series
    • International Olympiads Online Course
    • NEET Test Series
    • JEE Test Series
    • JEE Main Test Series
  • Centers
    • Kota
    • Bangalore
    • Indore
    • Delhi
    • More centres
  • Exam information
    • JEE Main
    • JEE Advanced
    • NEET UG
    • CBSE
    • NIOS
    • NCERT Solutions
    • Olympiad
    • NEET Previous Year Papers
    • NEET Sample Papers
    • JEE Main 2026 Percentile Predictor
    • JEE Main 2026 Session 1 Solutions
    • JEE Main Answer Key 2026 Session 1
    • JEE Mains Mock Test

ALLEN Career Institute Pvt. Ltd. © All Rights Reserved.

ISO